Publication

Submitted Papers

  • Nonparametric estimation of a factorizable density using diffusion models [arXiv]
    Hyeok Kyu Kwon, Dongha Kim, Ilsang Ohn & Minwoo Chae.

  • Online Bayesian inference for Cox proportional hazards model
    Junhyeok Choi, Jeyong Lee, Yongdai Kim & Minwoo Chae.

  • On reverse inequalities for Besov integral probability metrics between smooth densities
    Jeongjik Lee & Minwoo Chae.

  • Advances in Bayesian model selection consistency for high-dimensional generalized linear models [arXiv]
    Jeyong Lee, Minwoo Chae & Ryan Martin.

  • Group-constrained latent Dirichlet allocation for fashion item recommendation
    Seonghwi Kim, Jeyong Lee, Junhyeok Choi, Minwoo Chae, Minseok Song, Jong Hyun Cho & Kyungho Park.

  • Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks [arXiv]
    Minwoo Chae.

Publications

  • Fairness through matching
    Kunwoong Kim, Insung Kong, Jongjin Lee, Minwoo Chae, Sangchul Park & Yongdai Kim.
    Transactions on Machine Learning Research. (2025+).

  • Using statistical models for optimal packaging in semiconductor manufacturing processes
    Dongguen Kim, Heejin Kim, Yejin Kim, Minwoo Chae, Young Myoung Ko, Young-Mok Bae, Hyungsub Sim, Young Chan Oh & Keum Hwan Noh.
    Journal of the Korean Statistical Society. (2024).

  • Wasserstein upper bounds of Lp-norms for multivariate densities in Besov spaces
    Minwoo Chae.
    Statistics & Probability Letters. (2024).

  • Minimax optimal density estimation using a shallow generative model with a one-dimensional latent variable [arXiv]
    Hyeok Kyu Kwon & Minwoo Chae.
    International Conference on Artificial Intelligence and Statistics (AISTATS). (2024).

  • A likelihood approach to nonparametric estimation of a singular distribution using deep generative models [arXiv]
    Minwoo Chae, Dongha Kim, Yongdai Kim & Lizhen Lin.
    Journal of Machine Learning Research. (2023).

  • Online learning for Dirichlet process mixture models via weakly conjugate approximation
    Kuhwan Jeong, Minwoo Chae & Yongdai Kim.
    Computational Statistics and Data Analysis. (2023).

  • Adaptive Bayesian inference for current status data on a grid
    Minwoo Chae.
    Bernoulli. (2023).

  • Posterior asymptotics in Wasserstein metrics on the real line [arXiv]
    Minwoo Chae, Pierpaolo De Blasi & Stephen Walker.
    Electronic Journal of Statistics. (2021).

  • Bayesian high-dimensional semi-parametric inference beyond sub-Gaussian errors
    Kyoungjae Lee, Minwoo Chae & Lizhen Lin.
    Journal of the Korean Statistical Society. (2021).

  • Wasserstein upper bounds of the total variation for smooth densities
    Minwoo Chae & Stephen Walker.
    Statistics & Probability Letters. (2020).

  • An EM-based iterative method for solving large sparse linear systems [arXiv]
    Minwoo Chae & Stephen Walker.
    Linear and Multilinear Algebra. (2020).

  • Bayesian sparse linear regression with unknown symmetric error [arXiv]
    Minwoo Chae, Lizhen Lin & David Dunson.
    Information and Inference. (2019).

  • The semi-parametric Bernstein-von Mises theorem for regression models with symmetric errors [arXiv]
    Minwoo Chae, Yongdai Kim & Bas Kleijn.
    Statistica Sinica. (2019).

  • On an algorithm for solving Fredholm integrals of the first kind [arXiv]
    Minwoo Chae, Ryan Martin & Stephen Walker.
    Statistics and Computing. (2019).

  • Additive time-dependent hazard model with doubly truncated data
    Gordon Frank, Minwoo Chae & Yongdai Kim.
    Journal of the Korean Statistical Society. (2019).

  • Bayesian consistency for a nonparametric stationary Markov model
    Minwoo Chae & Stephen Walker.
    Bernoulli. (2019).

  • Convergence of an iterative algorithm to the nonparametric MLE of a mixing distribution [arXiv]
    Minwoo Chae, Ryan Martin & Stephen Walker.
    Statistics & Probability Letters. (2018).

  • A novel approach to Bayesian consistency
    Minwoo Chae & Stephen Walker.
    Electronic Journal of Statistics. (2017).

  • An online Gibbs sampler algorithm for hierarchical Dirichlet processes prior
    Yongdai Kim, Minwoo Chae, Kuhwan Jeong, Byungyup Kang & Hyoju Chung.
    European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD). (2016).

  • A closer look at the personality turnover relationship: criterion expansion, dark traits, and time
    Sang Eun Woo, Minwoo Chae, Andrew Jebb & Yongdai Kim.
    Journal of Management. (2016).

  • Beta processes and survival analysis
    Yongdai Kim & Minwoo Chae.
    Korean Journal of Applied Statistics. (2014). (Written in Korean)

  • Development of high-value traits of dairy cattle using survival analysis
    Kuhwan Jeong, Minwoo Chae, Seulgi Lee, Kwang Hyun Cho & Yongdai Kim.
    Journal of the Korean Data Analysis Society. (2013). (Written in Korean)

  • Documents recommendation using large citation data
    Minwoo Chae, Minsoo Kang & Yongdai Kim.
    Journal of the Korean Data and Information Science Society. (2013). (Written in Korean)

  • A mixture of beta-Dirichlet processes prior for Bayesian analysis of event history data
    Minwoo Chae, Rafael Weissbach, Kwang Hyun Cho & Yongdai Kim.
    Journal of the Korean Statistical Society. (2013).